ISSN 1600-5368

Colin A. Bremner and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.027 wR factor = 0.075 Data-to-parameter ratio = 21.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Received 14 August 2003 Accepted 19 August 2003

Online 30 August 2003

1,4-Diazoniabicyclo[2.2.2]octane triaquatrichloronickelate(II) chloride monohydrate

The title compound, $(C_6H_{14}N_2)[NiCl_3(H_2O)_3]Cl\cdotH_2O$, contains doubly protonated 1,4-diazoniabicyclo[2.2.2]octane (dabconium) $(C_6H_{14}N_2)^{2+}$ cations, *mer*- $[Ni^{II}(H_2O)_3Cl_3]^-$ octahedra, [mean Ni-O = 2.054 (2) Å and mean Ni-Cl = 2.4272 (6) Å] and additional (non-coordinated) chloride ions and water molecules. These species interact by way of numerous O-H···O, O-H···Cl and N-H···Cl hydrogen bonds and possible C-H···Cl interactions [mean H···Cl = 2.75 Å, mean C···Cl = 3.575 (3) Å and mean C-H···Cl = 142°] to result in a structure with a layered character. $(C_6H_{14}N_2)[Ni(H_2O)_3Cl_3]Cl\cdotH_2O$ is isostructural with its manganese(II)-containing congener.

Comment

The title compound, (I) (Fig. 1), arose as a by-product during synthetic investigations of organically templated nickel(II) phosphate networks (Guillou *et al.*, 2001). Compound (I) is isostructural with $(C_6H_{14}N_2)[Mn(H_2O)_3X_3]X \cdot H_2O$ (X = Cl and Br) as described by Feist *et al.* (1997). Related compounds built up from $(C_6H_{14}N_2)^{2+}$ 1,4-diazoniabicyclo[2.2.2]octane (dabconium) cations, metal-chloride/water polyhedra, and 'extra' (non-coordinated) chloride ions include $(C_6H_{14}N_2)$ -[Cu(H₂O)₂Cl₃]Cl·H₂O (Wei & Willett, 1996), containing trigonal bipyramidal [Cu^{II}(H₂O)₂Cl₃]⁻ groupings, and $(C_6H_{14}N_2)$ [Fe(H₂O)₂Cl₄]Cl (James *et al.*, 2001), containing *trans*-[Fe^{III}(H₂O)₂Cl₄]⁻ octahedra. The structures, spectroscopic properties and thermal behaviour of these types of materials have been reviewed by Bentrup *et al.* (1999).

Figure 1

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved The asymmetric unit of (I) (50% displacement ellipsoids). H atoms are shown as arbitrary spheres and H atoms attached to C atoms have been omitted for clarity. Hydrogen bonds are indicated by dashed lines.

In (I) (Fig. 1 and Table 1), three water molecules [Ni - O = 2.054 (2) Å] and three chloride ions [mean Ni-Cl = 2.4272 (6) Å] surround the nickel(II) cation in meridional (*mer*) conformation [spread of *cis* bond angles is 86.47 (5)–95.36 (5)°]. The dabconium cation has typical (Bremner & Harrison, 2003) geometrical parameters [mean N-C = 1.502 (3) Å, mean C-C = 1.532 (3) Å, mean C-N-C = 109.6 (2)° and mean N-C-C = 108.1 (2)°]. In addition, an uncoordinated water molecule (O4) and chloride ion (Cl4) are present in the structure.

The component species in (I) interact by way of an extensive network of $O-H\cdots O$, $O-H\cdots Cl$, $N-H\cdots Cl$ and bifurcated N-H···(Cl,Cl) hydrogen bonds and possible C- $H \cdot \cdot \cdot Cl$ interactions (Table 2). This results in sheets of stoichiometry $\{[Ni(H_2O)_3Cl_3]Cl \cdot H_2O\}^{2-}$ propagating in the (001) plane (Fig. 2). The [Ni(H₂O)₃Cl₃]⁻ moieties interact in the [100] direction by way of interoctahedral O3-H8···Cl3ⁱⁱ bonds and a pair of unusual $O2-H5\cdots Cl4^{ii}\cdots H4^{ii}-O1^{ii}$ and $O2-H6\cdots O4^{iii}-H10^{iii}\cdots O1^{ii}$ bonds, which connect adjacent octahedra via the non-coordinated Cl4 and O4 (water) species, respectively. Crosslinking in the [010] direction is provided by O1-H3···Cl3ⁱ O3-H7···Cl4^{iv}, and O4-H9···Cl2 bonds (see Table 2 for the acceptor-atom symmetry codes). Thus, atom Cl4 accepts three conventional O-H···Cl hydrogen bonds [mean $H \cdot \cdot \cdot Cl4 = 2.20$ Å, mean $O \cdot \cdot \cdot Cl4 = 3.094$ (2) Å and mean $O-H \cdots Cl4 = 172^{\circ}$ in very asymmetric, roughly pyramidal, coordination.

The organic species serves to bridge the $\{[Ni(H_2O)_3Cl_3)]Cl-H_2O\}^{2-}$ sheets in the [001] direction. One N/H group makes a simple N1-H1...Cl2 link, and one makes a bifurcated N2-

Figure 2

A detail of (I), showing part of an $\{[Ni(H_2O)_3Cl_3]Cl \cdot H_2O\}^{2-}$ sheet viewed down [001]. Colour key: $[Ni(H_2O)_3Cl_3)]^-$ octahedra green, Cl atoms green, O atoms red and H atoms grey (all radii arbitrary). The H···A portions of the H···O and H···Cl hydrogen bonds are coloured yellow and orange, respectively. Symmetry codes as in Table 2.

H2···Cl1^v,Cl3^v link (mean Cl1^v···H2···Cl3^v = 87°; see Table 2 for acceptor-atom symmetry codes). The energetics of N–H···Cl–*M* interactions, and their possible role as synthons in supramolecular chemistry are described in detail by Brammer *et al.* (2002).

A *PLATON* analysis (Spek, 2003) of (I) indicated the presence (Table 2) of a number of $C-H\cdots$ Cl interactions [mean $H\cdots$ Cl = 2.75 Å, mean $C\cdots$ Cl = 3.575 (3) Å and mean $C-H\cdots$ Cl = 142°]. If these are not merely artifacts of the crystal packing, then atom Cl4 accepts no fewer than five of these weak bonds, in addition to the three $O-H\cdots$ Cl4 links, as shown in Fig. 4 (*PLATON* van der Waals radius sum of H and Cl = 2.95 Å; next-nearest Cl4···H contact = 3.23 Å).

Experimental

NiCl₂ (10 ml, 1 *M*), H₃PO₄ (10 ml, 1 *M*) and dabco (0.5 g, C₆H₁₂N₂) were mixed together in a plastic bottle and heated at 373 K for 24 h, producing a green solution. The solution was cooled to room temperature, and bright-green plate-shaped crystals of (I) grew as water evaporated slowly from the viscous liquors over several weeks.

Crystal data

 $(C_6H_{14}N_2)$ [NiCl₃(H₂O)₃]Cl·H₂O $M_r = 386.77$ Orthorhombic, $P2_12_12_1$ a = 6.7019 (1) Å b = 11.9573 (2) Å c = 18.0923 (4) Å V = 1449.86 (5) Å³ Z = 4 $D_r = 1.772$ Mg m⁻³

Data collection

Nonius KappaCCD diffractometer ω and φ scans

Absorption correction: multi-scan (SORTAV; Blessing, 1995)

 $T_{\min} = 0.517, T_{\max} = 0.745$ 10 211 measured reflections 3303 independent reflections Mo $K\alpha$ radiation Cell parameters from 6654 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 2.08 \text{ mm}^{-1}$ T = 120 (2) K Block, bright green $0.35 \times 0.26 \times 0.14 \text{ mm}$

3224 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 27.5^{\circ}$ $h = -8 \rightarrow 8$ $k = -15 \rightarrow 12$ $l = -23 \rightarrow 23$

Figure 3

The unit-cell packing in (I), viewed down [100]. Colour key as in Fig. 2; additionally, C atoms blue, N atoms purple. H atoms attached to C atoms have been omitted for clarity.

Refinement

_ . .

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0414P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.027$	+ 0.3311P]
$wR(F^2) = 0.075$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.15	$(\Delta/\sigma)_{\rm max} = 0.001$
3303 reflections	$\Delta \rho_{\rm max} = 0.44 \text{ e} \text{ Å}^{-3}$
155 parameters	$\Delta \rho_{\rm min} = -0.78 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	Absolute structure: Flack (1983),
	1395 Friedel pairs
	Flack parameter $= 0.478(12)$

Table T		_	
Selected	interatomic distance	s (Å).	

Ni1-O1	2.0451 (17)	Ni1-Cl1	2.4127 (6)
Ni1-O2	2.0453 (17)	Ni1-Cl2	2.4178 (6)
Ni1-O3	2.0713 (16)	Ni1-Cl3	2.4512 (6)

Table 2 Hydrogen-bonding and C–H···Cl contact geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
O1-H3···Cl3 ⁱ	0.86	2.26	3.1231 (17)	174
$O1-H4\cdots Cl4$	0.94	2.14	3.0817 (18)	179
O2−H5···Cl4 ⁱⁱ	0.82	2.33	3.1392 (18)	168
O2−H6···O4 ⁱⁱⁱ	0.74	2.08	2.815 (3)	177
$O3-H7\cdots Cl4^{iv}$	0.95	2.12	3.0623 (17)	168
O3−H8···Cl3 ⁱⁱ	0.91	2.50	3.3833 (17)	163
O4−H9···O3	1.02	2.10	3.036 (2)	152
O4−H9···Cl2	1.02	2.82	3.5791 (18)	132
$O4-H10\cdots O1^{iv}$	0.87	2.01	2.836 (2)	158
$N1 - H1 \cdot \cdot \cdot Cl2$	0.93	2.21	3.056 (2)	151
$N2-H2\cdots Cl1^v$	0.93	2.32	3.110 (2)	143
$N2-H2\cdots Cl3^{v}$	0.93	2.75	3.399 (2)	128
$C1-H11\cdots Cl4^{vi}$	0.99	2.70	3.470 (3)	135
$C1-H12\cdots Cl4$	0.99	2.70	3.510 (2)	140
$C2-H22\cdots Cl4^{vi}$	0.99	2.80	3.693 (3)	150
$C3-H32 \cdot \cdot \cdot Cl1^{iv}$	0.99	2.79	3.682 (3)	151
$C4-H41\cdots Cl4^{vii}$	0.99	2.63	3.537 (3)	153
$C6-H62 \cdot \cdot \cdot Cl2^{viii}$	0.99	2.78	3.544 (3)	135
$C4-H42\cdots Cl4^{vi}$	0.99	2.86	3.591 (3)	131

Symmetry codes: (i) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (ii) 1 + x, y, z; (iii) $2 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (iv) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$; (v) $\frac{1}{2} - x, -y, z - \frac{1}{2}$; (vi) $\frac{1}{2} + x, \frac{1}{2} - y, -z$; (vii) $x - \frac{1}{2}, \frac{1}{2} - y, -z$; (viii) x - 1, y, z.

H atoms attached to O atoms were located from difference maps and treated as riding in their as-found locations. H atoms attached to C and N atoms were placed in idealized locations (N-H = 0.93 Å and C-H = 0.99 Å) and treated as riding on their attached atom. The constraint $U_{iso}(H) = 1.2U_{eq}$ (parent atom) was applied in all cases. Refinement of the Flack (1983) absolute structure parameter to 0.478 (12) indicated a merohedrally twinned crystal.

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *COLLECT*; data reduction: *COLLECT*; program(s) used to solve

Figure 4

The environment of atom Cl4 in (I), showing the O-H···Cl hydrogen bonds and possible C-H···Cl interactions associated with this species. Colour key as in Fig. 2; additionally, the H···Cl portions of the C-H···Cl contacts are highlighted in blue. [Symmetry codes: (i) $\frac{1}{2} + x, \frac{1}{2} - y, -z$; (ii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (iii) $x - \frac{1}{2}, \frac{1}{2} - y, -z$; (iv) x - 1, y, z.]

structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *ATOMS* (Shape software, 1999); software used to prepare material for publication: *SHELXL*97.

References

- Bentrup, U., Feist, M. & Kemnitz, E. (1999). Prog. Solid State Chem. 27, 75–129.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Brammer, L., Swearingen, J. K., Bruton, E. A. & Sherwood, P. (2002). Proc. Natl Acad. Sci. USA, 99, 4956–4961.
- Bremner, C. A. & Harrison, W. T. A. (2003). Acta Cryst. E59, m425-m426.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Feist, M., Troyanov, S., Stiewe, A., Kemnitz, E. & Kunze, R. (1997). Z. Naturforsch. Teil B, 52, 1094–1102.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Guillou, N., Forster, P. M., Gao, Q., Cheetham, A. K. & Férey, G. (2001). Mater. Sci. Forum, 378, 576–581.
- James, B. D., Bakalova, M., Liesegang, J., Reiff, W. M., Skelton, B. W. & White, A. H. (2001). *Inorg. Chem.* 40, 4617–4622.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Shape Software (1999). ATOMS. Shape Software, Kingsport, Tennessee,
- USA. Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wei, M. Y. & Willett, R. D. (1996). Inorg. Chem. 35, 6381-6385.